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Abstract

Multidimensional item response models can be based on multivariate normal ability distributions

or on multivariate polytomous ability distributions. For the case of simple structure in which

each item corresponds to a unique dimension of the ability vector, some applications of the

two-parameter logistic model to empirical data are employed to illustrate how, at least for the

example under study, comparable results can be achieved with either approach. Comparability

involves quality of model fit as well as similarity in terms of parameter estimates and computational

time required. In both cases, numerical work can be performed quite efficiently. In the case of the

multivariate normal ability distribution, multivariate adaptive Gauss-Hermite quadrature can be

employed to greatly reduce computational labor. In the case of a polytomous ability distribution,

use of log-linear models permits efficient computations.
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Multidimensional item response models are well-known in the psychometric literature but

relatively little used in practice (Reckase, 2007). In this report, simple-structure multidimensional

two-parameter logistic (2PL) models are considered in which each item is associated with one

coordinate of the ability vector (Zhang, 2004). This restriction simplifies analysis to a considerable

degree relative to approaches in which the relationship of items to coordinates of the ability vector

is not specified. Two distinct models are considered for the distribution of the ability vector.

In the first case, the ability vector is assumed to be a multivariate normal random vector with

mean 0 and with a covariance matrix that has all diagonal elements equal to 1, so that each

coordinate has variance 1, and with unknown off-diagonal elements that are the correlations of

the coordinates of the ability vector. In the second case, the ability vector is assumed to have

polytomous coordinates, a choice that may be able to reduce the computational burden associated

with multidimensional model, but one that may seem less familiar than assuming a normal

distribution. In the polytomous case, the realizations of each coordinate of the ability vector are

from a discrete and finite set of real valued ability levels. Unidimensional models of this type are

sometimes referred to as discrete latent trait models (Heinen, 1996) or located latent class models

(Formann, 1992). In the case of multidimensional discrete latent traits, the term diagnostic models

(von Davier, 2005) is employed. Each of the coordinate sets of ability levels may be different, and,

for a given coordinate, it is common to use evenly spaced integers, so that the set of levels for

a coordinate might be the two-member set {−1,+1} or the three-member set {−1, 0,+1}. Sets

used will often have four or more elements. In both models for the ability vector, algorithms are

provided for computation of maximum likelihood. These algorithms are sufficiently efficient so

that complete data from an assessment can be analyzed rapidly enough for practical use.

By means of the expected log penalty criterion (Gilula & Haberman, 1994), the two cases

are compared in terms of their effectiveness at describing the observed data. In addition, the two

cases are compared in terms of reliability of ability parameter estimates provided by the models.

Approaches used do not assume that any model examined is valid, and comparisons involve

measurement of the quality of prediction of response patterns rather than test of goodness of fit.

The basic conclusion suggested by the example studied is that the choice of latent-variable

distribution has remarkably limited effect. This conclusion is consistent with a previous

one-dimensional analysis (Haberman, 2005a), although it is possible that other examples can be

found in which larger differences between model performance are evident.
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In section 1, the multivariate two-parameter logistic (2PL) model under study is introduced.

Section 2 considers application to a multivariate normal ability distribution. Section 3 considers

application to multivariate polytomous ability distributions. Section 4 illustrates application of

results to a Praxis
TM

administration. Section 5 provides conclusions based on the empirical results

observed.

1 The Multidimensional 2PL Model

In the general model under study, a test is considered with q ≥ 2 right-scored items. A sample

of n ≥ 2 examinees is used in analysis of the data. For examinee i, 1 ≤ i ≤ n, for item j, 1 ≤ j ≤ q,

Xij is 1 if the response to item j is correct, and Xij is 0 otherwise. The q-dimensional vectors Xi

with coordinates Xij , 1 ≤ j ≤ q, are independent and identically distributed for examinees i from

1 to n, and the set of possible values of Xi is denoted by Γ.

The basic 2PL model under study assumes that an r-dimensional random ability vector θi

with coordinates θik, 1 ≤ k ≤ r, is associated with each examinee i. The pairs (Xi,θi), 1 ≤ i ≤ n,

are independent and identically distributed, and, for each examinee i, the response variables Xij ,

1 ≤ j ≤ q, are conditionally independent given θi. Let

P (h; y) = exp(hy)/[1 + exp(y)]

for h and y real.

To each item j, 1 ≤ j ≤ q, corresponds an ability coordinate υ(j), 1 ≤ υ(j) ≤ r. For an

unknown item discrimination aj and an unknown real parameter γj , if ω is a d-dimensional vector

with coordinates ωk, 1 ≤ k ≤ r, then the conditional probability that Xij = h given θi = ω is

P (h; ajωυ(j) − γj). Provided that the discrimination aj is positive, the item difficulty for item j is

then γj/aj = bj . If r is 1, then one has a one-dimensional 2PL model, for

P (xij ; ajω1 − γj) =
exp[xijaj(ω1 − bj)]
1 + exp[aj(ω1 − bj)]

.

If, in addition, all aj are equal, then one has a one-dimensional one-parameter logistic

(1PL) model. This model may also be termed a Rasch model. If r > 1, then the 2PL model is

multidimensional. For r > 1, the assumption is made that, for 1 ≤ k ≤ r, the set υ−1(k) of items

j, 1 ≤ j ≤ q, with υ(j) = k is nonempty, so that each coordinate θik of θi corresponds to at least

one item. If aj is constant for j in υ−1(k), 1 ≤ k ≤ r, then one has a multidimensional 1PL model.
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In all cases under study, a restrictive model is used for the distribution of the ability vector

θi. In section 2, θi is assumed to have a multivariate normal distribution with mean 0 and with a

covariance matrix that has all diagonal elements equal to 1, so that each θik is assumed to have

variance 1. In section 3, the distribution of θi is assumed to have all mass on a known finite set

Ω, which represents the possible values of a multidimensional discrete ability vector.

2 The Multivariate Normal Case

In the multivariate normal case, the assumption is made that θi has a multivariate normal

distribution N(0,D). Here 0 is the r-dimensional vector with all coordinates 0, and D is an

r-by-r positive-definite symmetric matrix with elements dkk′ , 1 ≤ k ≤ r, 1 ≤ k′ ≤ r, such that

each diagonal element dkk = 1, and dkk′ , k 6= k′, is the unknown correlation of θik and θik′ . The

assumption that the mean of θi is 0 and the variance dkk of each θik is 1 is imposed to permit

identification of the item parameters aj and bj for each item j from 1 to q. For comparison

with the polytomous case presented in section 3, let dkm be row k and column m of D−1 for

1 ≤ k ≤ m ≤ r, let |D| denote the determinant of D, and let δkm be 1 for k = m and 0 otherwise.

Then the density pθ of θi at a vector ω with coordinates ωk, 1 ≤ k ≤ r, satisfies

log pθ(ω) = −r log(2π) + log(|D|)
2

−
r∑

k=1

k∑
m=1

[(1− δkm/2)dkm]ωkωm. (1)

2.1 Model Parameters

The multivariate normal case can be parametrized so that a version of the stabilized

Newton-Raphson algorithm (Haberman, 1988) can be readily applied. The basic requirement

involves an appropriate decomposition of D. If r is 1, then D reduces to the one-by-one matrix

with element 1, and D = FF′, where F and its transpose F′ equal D. By use of the Cholesky

decomposition (Stewart, 1973, p. 134), it follows that, if r > 1, then D is determined by

unique real constants τkk′ , 1 ≤ k′ < k ≤ r, by the decomposition D = F(τ )[F(τ )]′. Here τ is

an r(r − 1)/2-dimensional vector with element k′ + k(k − 1)/2 equal to τkk′ for 1 ≤ k′ < k and

1 ≤ k ≤ r, and F(τ ) is an r-by-r matrix with elements fkk′(τ ), 1 ≤ k ≤ r, 1 ≤ k′ ≤ r. The upper

triangular elements fkk′(τ ) = 0 for 1 ≤ k < k′ ≤ r. Let

νk(τ ) =

(
1 +

k−1∑
k′=1

τ2
kk′

)1/2
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for 2 ≤ k ≤ r, and let ν1(τ ) be 1. The diagonal element fkk(τ ) = 1/νk(τ ) for each integer k,

1 ≤ k ≤ r, the first column in the lower triangle of F(τ ) satisfies fk1(τ ) = τk1/νk(τ ) for 1 < k ≤ r,

and the remaining lower triangle of F(τ ) satisfies

fkk′(τ ) =
τkk′

νk(τ )νk′(τ )

for 1 < k′ < k ≤ r. The constants τkk′ can have any combination of real values. If r = 2, then

τ21 = d21/(1 − d21)1/2, where d21 is the correlation of θi2 and θi1. The distribution of θi under

the model is the same as the distribution of F(τ )Z, where Z is an r-dimensional random vector

with independent coordinates Zk with standard normal distributions, 1 ≤ k ≤ r. Let φ be the

density function of the standard normal distribution, and let φr be the function on Rr such that

φr(z) =
∏r

k=1 φ(zk) for each r-dimensional real vector with coordinates zk, 1 ≤ k ≤ r. Thus φr is

the density of Z.

Consider the vector β with ν = 2q + r(r − 1)/2 coordinates βj , 1 ≤ j ≤ u such that βj = aj

for 1 ≤ j ≤ q, βq+j = γj for 1 ≤ j ≤ q, and β2q+k′+(k−1)(k−2)/2 is τkk′ if 1 ≤ k′ < k ≤ r. Let τ (β)

be the r(r− 1)/2-dimensional vector with elements β2q+h for 1 ≤ h ≤ r(r− 1)/2. Let R(β) be the

one-by-one identity matrix if r is 1. Otherwise, let R(β) be F(τ (β)).

For any q-dimensional vector x with all coordinates 0 or 1, the probability that Xi = x is then

p(x;β) =
∫
p (x|R(β)z;β) φr(z)dz.

For the r-dimensional vector ω with coordinates ωk, 1 ≤ k ≤ r,

p(x|ω;β) =
q∏

j=1

P (xj , βjωυ(j) − βq+j)

is the conditional probability that Xi = x given that θi = ω. If, for 1 ≤ k ≤ r,

sk(x;β) =
q∑

j=1

δkυ(j)βjxj ,

and if

V (x,ω;β) =
q∏

j=1

exp(−βq+jxj)
1 + exp(βjωυ(j) − βq+j)

,

then

p(x|ω;β) = V (x,ω;β) exp

[
r∑

k=1

sk(x;β)ωk

]
.
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The log likelihood function is then

`(β) =
n∑

i=1

`i(β),

where

`i(β) = log p(Xi;β), 1 ≤ i ≤ n.

If

Kit(z) = p(Xi|R(β)z;β)φr(z)

for r-dimensional vectors z, then

`i(β) = log
∫
Kit(z)dz.

2.2 The Stabilized Newton-Raphson Algorithm

The likelihood function may be maximized by a simple variation on the stabilized

Newton-Raphson algorithm (Haberman, 1974a, 1988). It is also possible to use the EM algorithm

(Dempster, Laird, & Rubin, 1977); however, because the Hessian matrix of the log likelihood

is not used in computations in this case, the EM algorithm is less helpful for estimation of

asymptotic variances. The one major complication is the problem of r-dimensional quadrature.

Adaptive Gauss-Hermite integration is appropriate for this problem (Haberman, 2006), although

the multidimensional version of adaptive integration is a bit more complex than is the univariate

version. Consider use of s(k) quadrature points for dimension k, 1 ≤ k ≤ r. Let vkh and ykh,

1 ≤ h ≤ s(k), be defined so that

s(k)∑
e=1

ym
e vkh =

∫
ymφ(y)dy

for 1 ≤ m ≤ 2s(k) − 1. Let β̂ denote the maximum-likelihood estimate of β, so that `(β̂) is the

supremum `∗ of `(β) for all possible ν-dimensional vectors β. Consider an iteration t ≥ 0 of

the stabilized Newton-Raphson algorithm. Let H be the set of all r-dimensional vectors h with

coordinates h(k), 1 ≤ h(k) ≤ s(k), 1 ≤ k ≤ r. Thus H has
∏r

k=1 s(k) elements. Let yh be the

vector with coordinates yh(k) for 1 ≤ k ≤ r. Then∫
π(z)φr(z)dz =

∑
h∈H

π(yh)
r∏

k=1

vkh(k)

whenever π(z) is a polynomial such that no power of a coordinate zk exceeds 2s(k)− 1.
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To apply adaptive quadrature, consider an iteration t ≥ 0. At the start of the iteration, let

βt be an approximation for the maximum-likelihood estimate β̂ of β. The standard formula in

calculus for change of variables permits `i(β) to be approximated by a function

`it(β) = logLit(β),

where

Lit(β) = |Wit|−1
∑
h∈H

[Kit(uith)/φr(yh)]
r∏

k=1

vkh(k),

uith = (W′
it)

−1yh + zi,

|Wit| is the determinant of Wit, Wit is an r-by-r matrix with coordinates witkk′ , 1 ≤ k ≤ r,

1 ≤ k′ ≤ r, witkk is positive for 1 ≤ k ≤ r, witkk′ = 0 for 1 ≤ k < k′ ≤ r, zit is an approximation to

the location of the maximum over z in Rr of Kit(z), and WitW′
it = −∇2Kit(zit) for the Hessian

matrix ∇2Kit(zit) of Kit at zit. Note that |Wit| is the product of the witkk for 1 ≤ k ≤ r (Rao,

1973, p. 23).

With the starting value βt, one step of the stabilized Newton-Raphson algorithm is applied

to `St =
∑n

i=1 `it to yield a new approximation,

βt+1 = βt + αtζt.

To define αt and ζt, let κ and κ∗ < 1/2 be given positive constants, let |z| be max1≤j≤ν |zj | for a

ν-dimensional vector z with coordinates zj , 1 ≤ j ≤ ν, let ∇`St be the gradient of `St, let ∇2`St

be the Hessian matrix of `t, let I be the ν-by-ν identity matrix, let

Λt = −∇2`t(βt) + ctI

be positive definite, let

ζt = Λ−1
t ∇`t(βt),

let |ζt| < κ, and let αt > 0 satisfy

`St(βt+1)− `St(βt) > αtκ
∗ζ′t∇`St(βt). (2)

Here ct is 0 if this choice satisfies the conditions that Λt is positive definite and |ζt| < κ.

Otherwise, ct is obtained by letting c∗t be the maximum absolute value of a diagonal element of

∇2`t(βt) and successively trying κ∗c∗t , (1 + 22)κ∗c∗t , (1 + 22 + 32)κ∗c∗t , and so on. If (2) is satisfied
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with αt = 1, then αt is set to 1. In general, αt is found by use of a rough approximation to

the maximum of `St(βt + αζt) for α > 0 (Haberman, 1974a, 2006). The choices of κ = 2 and

κ∗ = 1/16 are used in calculations reported in this report.

For the example studied in this paper, use of sk = 4 for each k was quite adequate for a

case with r = 4, q = 118, and 29 or 30 items associated with each coordinate θik. The choice

of sk = 3 for each coordinate k was also acceptable, and even sk = 2 for each coordinate k was

tolerable. These relatively small values are important, for sk = 4 for each k and r equals 4

leads to 256 quadrature points, while sk = 3 for each coordinate leads to 81 quadrature points,

and sk = 2 for each coordinate leads to 16 quadrature points. The relatively small number of

points required is consistent with existing literature (Schilling & Bock, 2005). The quadrature

situation with adaptive quadrature is far better than with the nonadaptive quadrature approach

used in the National Assessment of Educational Progress (NAEP). This approach, found in the

NAEP BGROUP program, uses 41 points for each coordinate (Sinharay & von Davier, 2005),

so that, for r = 4, 414 = 2, 825, 761 quadrature points would result. In practice, for more than

two dimensions, NAEP uses the CGROUP program. This program employs a generalization of

Laplace approximations for integral evaluation, so that the actual computational labor is much

less than suggested by this comparison. Nonetheless, accuracy of the Laplace approach is an issue.

2.3 Estimated Expected Log Penalty

To evaluate the model, consider the expected log penalty

H(z) = −q−1E(`i(z))

per item (Gilula & Haberman, 1994). Consider the minimum I of H(z) for ν-dimensional vectors

z such that zj > 0 for 1 ≤ j ≤ q. Let H(β) = I. If the 2PL model with multivariate normal ability

vector is correct, then β is defined as in the model definition and I is the entropy per item of the

vector Xi. If β is uniquely defined, then β̂ converges to β with probability 1 as the sample size n

goes to ∞, whether or not the model holds, and Î = (nq)−1`∗ converges to I. Let

Z = E(−∇2`i(β)),

let

Y = E(∇`i(β)[∇`i(β)]′),
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and let tr denote a trace. Then n1/2(β̂ − β) converges in distribution to a normal random vector

with mean 0 and covariance matrix Z−1YZ−1. If the model holds, then Y = Z and the covariance

matrix is Y−1. The scaled difference n1/2(Î − I) converges in distribution to a normal random

variable with mean 0 and variance equal to the variance of q−1`i(β). The expected value of Î is

less than I. As n approaches ∞, 2nq[I − E(Î)] converges to ψ = tr(Z−1Y). In addition, if X0 is

independent of Xi for 1 ≤ i ≤ n and X0 has the same distribution as Xi, then the conditional

expectation Ĩ0 of the log penalty −q−1`0(β̂) given Xi, 1 ≤ i ≤ n, for prediction of X0 satisfies the

condition that nq(Ĩ0 − I) converges in distribution to a random variable with expectation ψ, and

ψ is ν if the model holds. More generally, ψ is estimated by ψ̂ = tr(Ẑ−1Ŷ), where

Ẑ = −n−1∇2`(β̂)

and

Ŷ = n−1
n∑

i=1

∇`i(β̂)[∇`i(β̂)]′.

Thus Ĩ0 may be approximated by Î0 = Î + ψ̂/(nq). In practice, ∇`i is approximated by use of

adaptive Gaussian quadrature. A simplified approximation that assumes the model is correct is

Îa0 = Î + ν/(nq). This approximation is the Akaike information criterion (AIC) divided by the

number of items times twice the sample size (Akaike, 1974).

The AIC, which is used widely in model selection, balances the gain in log likelihood of

a model (the improved model fit) against the cost in terms of parameters being estimated.

Therefore, a model that fits the data better but needs a much larger number of parameters than

competing models with just slightly lower estimated expected log penalty may not fare as well

when evaluated by means of the AIC. The Gilula-Haberman criterion Î0 generally leads to results

similar to those obtained with the AIC criterion, although appreciable differences can arise when

the model fits the data rather poorly. When sample sizes are large, Î, Î0, and Îa0 are normally

very similar (Gilula & Haberman, 2001). This situation is helpful when the EM algorithm is

employed, for estimation of Î0 is less readily accomplished in this case than in the case of the

stabilized Newton-Raphson algorithm.

2.4 Estimated Ability Parameters

The ability parameter θi can be defined and approximated even if the underlying model is

not accurate (?, ?). Let θi be defined as a random vector such that the conditional distribution
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of θi given Xi = x is the same as the conditional distribution of a random vector θ∗i given the

random vector X∗
i with values in Γ, where θ∗i has a multivariate normal distribution with mean

0 and covariance matrix R(β)[R(β)]′ and the conditional probability that X∗
i = x in Γ given

θ∗i = ω is p(x|ω;β). Thus the conditional density p(ω|x;β) at ω of θi given Xi = x is given by

Bayes’s theorem to be

pθ|X(ω|x;β) =
p(x|ω;β)φr([R(β)]−1ω)

|R(β)|p(x;β)
.

If the model actually holds, then the definition of θi in the model definition is consistent with

the definition applied here. The information per item provided by θi is

∆ = I − Iθ.

Alternatively, q∆ is the information that Xi provides concerning θi. Here Iθ is the expected value

per item of the log penalty − log p(Xi|θi;β) from use of the conditional probability approximation

p(Xi|θi) for the conditional probability given θi for the observed value of Xi. One has

Iθ = q−1
q∑

j=1

Ijθ,

where

Ijθ = −E(logP (Xij ;βjθυ(j) − βq+j)).

An application of Bayes’s theorem shows that Iθ may be estimated by

Îθ = −(nq)−1
n∑

i=1

[p(Xi; β̂)]−1

∫
φr(ω)p(Xi;R(β̂)ω; β̂) log p(Xi;R(β̂)ω; β̂)dω.

It follows that ∆ has estimate ∆̂ = Î − Îθ.

The conditional expectation θ̃i = E(θi|Xi) of θi given Xi, the EAP estimate of θi (Bock &

Aitkin, 1981), is found from Bayes’s theorem to be Eθ|X(Xi;β), where

Eθ|X(x;β) =
∫

ωpθ|X(ω|x;β)dω.

Although the expectation E(θi) = E(θ̃i) of θi is the zero vector 0 under the model, the

expectation need not be 0 if the model does not hold. The estimated conditional expectation of

θi given Xi is θ̂i = Eθ|X(Xi; β̂). Computations may be performed by use of adaptive quadrature.

One may employ θ̂i as an estimate of θi. The expectation E(θi) is then estimated by the average

θ̄ = n−1
∑n

i=1 θ̂i.
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The covariance matrix of θ̃i is

Cov(θ̃) = E([θ̃i − E(θi)][θ̃i − E(θi)]′).

The corresponding estimate is

Ĉov(θ̃) = n−1
n∑

i=1

[θ̂i − θ̄][θ̂i − θ̄]′.

The conditional covariance matrix C̃ovi(θ|X) of θi given Xi may be used to assess the

accuracy with which the data Xi determine θi. One has C̃ovi(θ|X) = Covθ|X(Xi;β), where

Covθ|X(x;β) =
∫

[ω − Eθ|X(x;β)][ω − Eθ|X(x;β)]′pθ|X(ω|x;β)dω.

The estimate of C̃ovi(θ|X) is then Ĉovi(θ|X) = Covθ|X(Xi; β̂). The expected conditional

covariance matrix E(Ĉovi(θ|X)) is then estimated by

Cov(θ|X) = n−1
n∑

i=1

Ĉovi(θ|X).

For any nonzero r-dimensional vector c, the reliability of c′θ̃i is

ρ2(c) =
c′ Cov(θ̃)c

c′E(Ĉovi(θ|X))c + c′ Cov(θ̃)c
.

The reliability of c′θ̂i is approximately the same in large samples, and the estimated reliability is

then

ρ̂2(c) =
c′Ĉov(θ̃)c

c′Cov(θ|X)c + c′Ĉov(θ̃)c
.

3 The Polytomous Case

In the polytomous case, the assumption is made that the distribution of θi is confined to

a finite set Ω with M elements. Often, the set of multidimensional ability levels Ω will be a

nonempty subset of the Cartesian product
∏r

k=1 Ωk of sets Ωk, 1 ≤ k ≤ r, where Ωk is a subset of

the real line that contains ck > 1 possible values of θik. In typical cases, Ωk is the set of integers

from −(ck − 1)/2 to (ck − 1)/2 if ck is odd, and Ωk is the set of integers −ck − 1 + 2d for integers

d from 1 to ck if ck is even. Thus Ωk is {−1, 1} for ck = 2 and {−1, 0, 1} for ck = 3. Computations

are most rapid if the number of elements of Ω is small. Thus permitting Ω to have fewer than

the
∏r

k=1 ck elements of
∏r

k=1 Ωk can save computational labor. Of course, such a saving is only
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appropriate if the ability of the model to predict the joint distribution of the Xi is not impaired

to a substantial degree.

For each ω in Ω, the probability pdθ(ω) that θi = ω is assumed positive, and it is assumed

that the pdθ(ω) satisfy a log-linear model

log pdθ(ω) = λ+ T0(ω) +
G∑

g=1

τdgTg(ω)

for known constants Tg(ω),0 ≤ g ≤ G < M , and unknown parameters λ and τdg, 1 ≤ g ≤ G.

Given the Tg(ω) and the τdg, λ is determined by the requirement that the sum of the pdθ(ω), ω in

Ω, must be 1. To provide any possibility that the τdg, 1 ≤ g ≤ G, can be identified, it is assumed

that no real constants ug, 1 ≤ g ≤ G, exist such that some ug is not zero and
∑G

g=1 ugTg(ω)

has the same value for all ω in Ω. Even with these constraints on G and on the Tg(ω), the τdg,

1 ≤ g ≤ G, cannot be identified unless 2q + G is less than 2q − 1 (Haberman, 2005a), and, in

practice, identification of parameters is much more difficult unless G and the Tg(ω), 0 ≤ g ≤ G, ω

in Ω, are carefully selected.

The basic log-linear model to consider is analogous to the multivariate normal distribution

applied in the continuous case. One considers a log-linear model with no main effects and with

only linear-by-linear interactions, so that, for ω̄k the arithmetic mean of the elements of Ωk,

log pdθ(ω) = λ+
r∑

k=1

k∑
m=1

ηkm(ωk − ω̄k)(ωm − ω̄k). (3)

With no restrictions imposed on the ηkm, this model has G = r(r + 1)/2 independent parameters.

Comparison of (1) and (3) shows that log pθ and log pdθ have a very similar form, especially in the

typical case in which ω̄k = 0.

More general use of polynomials can be considered. For 1 ≤ k ≤ r, let Okh, 0 ≤ h < ck, be the

orthogonal polynomial of degree h that corresponds to the elements of Ωk and to some positive

weighting function wk on Ωk, so that∑
ωk∈Ωk

wk(ωk)Okh(ωk)Okm(ωk) = δhm

for 0 ≤ h ≤ m < ck. Let Ξ be a nonempty set of vectors ξ with integer elements ξ(k),

0 ≤ ξ(k) < ck, for 1 ≤ k ≤ r. Assume that no vector in Ξ has all coordinates 0. Then Ξ defines a

log-linear model

log pdθ(ω) = λ+
∑
ξ∈Ξ

ζξ

r∏
k=1

Okξ(k)(ωk). (4)
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Models of this kind have a long history in the literature on log-linear models (Haberman, 1974b)

and variations have begun to appear with general diagnostic models (Xu & von Davier, 2007).

The model specified by (4) is equivalent to the model specified by (3) if Ξ consists of all vectors ξ

with either two coordinates equal to 1 and all other coordinates 0 or with one coordinate equal to

2 and all other coordinates 0. General diagnostic models have applied (4) with Ξ consisting of all

vectors ξ that correspond to the model of (3) together with all additional vectors ξ, which have

all coordinates but one equal to 0 and one nonzero coordinate with a value between two specified

positive integers.

3.1 Model Parameters

As in the multivariate normal case, the polytomous case can be parametrized so that a

version of the stabilized Newton-Raphson algorithm (Haberman, 1988) can be readily applied.

Alternatively, polytomous discrete cases can be specified as multidimensional discrete latent trait

models and estimated with the EM algorithm, for example using the software mdltm (von Davier,

2005).

For the log likelihood to be maximized, consider the vector βd with νd = 2q +G coordinates

βdj , 1 ≤ j ≤ u such that βdj = aj for 1 ≤ j ≤ q, βd(q+j) = γj for 1 ≤ j ≤ q, and βd(2q+g) is τdg for

1 ≤ g ≤ G. Let

χ(βd) =
∑
ω∈Ω

exp

T0(ω) +
G∑

g=1

βd(2q+g)Tg(ω)

 ,
and let

pdθ(ω;βd) = [χ(βd)]
−1 exp

T0(ω) +
G∑

g=1

βd(2q+g)Tg(ω)

 .
For any q-dimensional vector x with all coordinates 0 or 1, the probability that Xi = x is then

pd(x;βd) =
∑
ω∈Ω

pd(x|ω;βd)pdθ(ω;βd).

For the r-dimensional vector ω with coordinates ωk, 1 ≤ k ≤ r,

pd(x|ω;βd) =
q∏

j=1

P (xj , βdjωυ(j) − βd(q+j))

is the conditional probability that Xi = x given that θi = ω. If, for 1 ≤ k ≤ r,

sdk(x;βd) =
q∑

j=1

δυ(j)kβdjxj ,
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and if

Vd(x,ω;βd) =
q∏

j=1

exp(−βq+jxj)
1 + exp(βdjωυ(j) − βd(q+j))

,

then

pd(x|ω;βd) = Vd(x,ω;βd) exp

[
r∑

k=1

sdk(x;βd)ωk

]
.

The log likelihood is then

`d(βd) =
n∑

i=1

`di(βd),

where

`di(βd) = log pd(Xi;βd), 1 ≤ i ≤ n.

For the maximum-likelihood estimate β̂d, `d(β̂d) is the supremum `d∗ of `d(βd) for all

νd-dimensional vectors βd.

Unlike in the multivariate normal case, considerable care is needed in the polytomous case to

understand when models really differ. For example, consider a positive constant zk and a real

constant uk for 1 ≤ k ≤ r. Replace each ωk in Ωk by zkωk + uk, divide each item discrimination

aj by zk if υ(j) = k, change each intercept parameter γj to γj − ukaj/zk if υ(j) = k, and let (3)

continue to hold for ω in Ω with each ηkm divided by zkzm. Then the probabilities pd(x;βd) are

unchanged for x in Γ. It follows that the selection of Ωk to consist of evenly spaced integers with

mean 0 is equivalent in terms of the resulting model to any selection of Ωk in which the members

of Ωk are evenly spaced points. Thus Ωk = {−1, 0, 1} leads to the same model as Ωk = {1, 1.5, 2}.

In addition, the connection with the multivariate normal case is stronger than might at first

be apparent. Define the covariance matrix D and the elements dkm of D−1 as in the multivariate

normal case. If ηkm = (1 − δkm/2)dkm, Ωk consists of numbers (−ck − 1/2 + 2d)zk, 1 ≤ d ≤ ck,

where zk > 0, zk approaches 0 and ckzk approaches ∞, then θi converges in distribution to a

multivariate normal random vector with mean 0 and with covariance matrix D. The argument

required involves use of an auxiliary r-dimensional random vector u, which is independent of

θi and has independent coordinates uk with uniform distributions on (−zk/2, zk/2). It is a

straightforward matter to show that θi + u is a continuous random vector with a density that

approaches the multivariate normal density pθ defined in (1). Application of Scheffé’s theorem and

the Mann-Wald theorem yield the desired result (Rao, 1973, pp. 122–125). Given the previous

observations concerning the effects of linear transformations of the elements of Ωk for 1 ≤ k ≤ r,
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the practical consequence of the result is that, for any ε > 0, there exists an integer c > 0 such

that `d∗ > `∗ − ε whenever each ck > c and Ω =
∏r

k=1 Ωk. Thus polytomous models must be

competitive with multivariate normal models in terms of model fit for sufficiently large ck. As

evident from the data analysis, polytomous models are attractive even for all ck equal to 4 or 5,

and it is possible to use Ω with somewhat fewer elements than
∏r

k=1 Ωk with little loss.

3.2 The Stabilized Newton-Raphson Algorithm

The log likelihood may be maximized by a simple variation on the stabilized Newton-Raphson

algorithm (Haberman, 1974a, 1988). The EM algorithm can also be employed (von Davier, 2005;

Xu & von Davier, 2007). In the polytomous case, no integrals are evaluated, so that adaptive

Gauss-Hermite quadrature is not required and calculations are simpler. Nonetheless, some

restrictions on the size of G are required to ensure that the model parameters are well-enough

identified to permit a reasonable rate of convergence (Haberman, 2005a). Consider an iteration

t ≥ 0. At the start of the iteration, let βdt be an approximation for the maximum-likelihood

estimate β̂d of βd. The stabilized Newton-Raphson algorithm yields a new approximation

βd(t+1) = βdt + αdtζdt.

To define αdt and ζdt, let κd and κ∗d < 1/2 be given positive constants, let ∇`d be the gradient of

`d, let ∇2`d be the Hessian matrix of `d, let Id be the νd-by-νd identity matrix, let cdt ≥ 0, let

Λdt = −∇2`d(βdt) + ctdId,

let

ζdt = Λ−1
dt ∇`dt(βdt),

let |ζdt| ≤ κ, and let αdt > 0 satisfy

`d(βd(t+1))− `d(βdt) > αdtκ
∗
dζ

′
dt∇`d(βdt). (5)

As in the multivariate normal case, cdt = 0 and αdt = 1 are used if all constraints are satisfied.

Procedures for finding alternative values are the same, and use of κd = 2 and κ∗d = 1/16 appears

acceptable.
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3.3 Estimated Expected Log Penalty

As in the multivariate normal case, to evaluate the model, consider the expected log penalty

Hd(z) = −q−1E(`di(z))

per item. Consider the minimum Id of Hd(z) for νd-dimensional vectors z such that zj > 0 for

1 ≤ j ≤ q. Let Hd(βd) = I. If the 2PL model with a polytomous ability vector is correct, then

βd is defined as in the model definition and Id is the entropy per item of the vector Xi. If βd

is uniquely defined, then β̂d converges to βd with probability 1 as the sample size n goes to ∞,

whether or not the model holds, and Îd = (nq)−1`d(β̂) converges to Id. Let

Zd = E(−∇2`di(βd)),

and let

Yd = E(∇`di(βd)[∇`di(βd)]
′).

Then n1/2(β̂d − βd) converges in distribution to a normal random vector with mean 0 and

covariance matrix Z−1
d YdZ−1

d . If the model holds, then Yd = Zd and the covariance matrix is

Y−1
d . The scaled difference n1/2(Îd − Id) converges in distribution to a normal random variable

with mean 0 and a variance equal to the variance of q−1`di(β). The expected value of Îd is less

than Id. As n approaches ∞, 2nq[Id − E(Îd)] converges to ψd = tr(Z−1
d Yd). In addition, if X0 is

independent of Xi for 1 ≤ i ≤ n and X0 has the same distribution as Xi, then the conditional

expectation Ĩd0 of the log penalty −`d0(β̂d) given Xi, 1 ≤ i ≤ n, for prediction of X0 satisfies the

condition that nq(Ĩd0 − Id) converges in distribution to a random variable with expectation ψd,

and ψd is νd if the model holds. More generally, ψd is estimated by ψ̂d = tr(Ẑ−1
d Ŷd), where

Ẑd = −n−1∇2`d(β̂d)

and

Ŷd = n−1
n∑

i=1

∇`di(β̂d)[∇`di(β̂d)]
′.

Thus Ĩd0 may be approximated by Îd0 = Îd + ψ̂d/(nq). If the model is correct, then the simplified

Akaike approximation Îda0 = Î + ν/(nq) may be employed.
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3.4 Estimated Ability Parameters

As in the multivariate normal case, the ability parameter θi can be defined and approximated

even if the underlying model is not accurate (?, ?). Let θdi be defined as a random vector such

that the conditional distribution of θdi given Xi = x is the same as the conditional distribution

of a random vector θ∗di given the random vector X∗
i with values in Γ, where θ∗i = ω, ω in Ω,

with probability pdθ(ω;βd) and the conditional probability that X∗
i = x in Γ given θ∗di = ω is

pd(x|ω;βd). Thus the conditional probability pd(ω|x;βd) that θdi = ω of given Xi = x is given

by Bayes’s theorem to be

pdθ|X(ω|x;βd) =
pd(x|ω;βd)pdθ(ω;βd)

pd(x;βd)
.

If the model actually holds, then θi in the model definition has the same distribution as θdi.

The information per item provided by θdi is

∆d = Id − Idθ.

Alternatively, q∆d is the information that Xi provides concerning θdi. Here Idθ is the expected

value per item of the log penalty − log pd(Xi|θdi;βd) from use of the conditional probability

approximation pd(Xi|θdi) for the conditional probability given θdi for the observed value of Xi.

One has

Idθ = q−1
q∑

j=1

Idjθ,

where

Idjθ = −E(logP (Xij ;βdjθdk(j) − βd(q+j))).

An application of Bayes’s theorem shows that Idθ may be estimated by

Îdθ = −(nq)−1
n∑

i=1

[pd(Xi; β̂d)]
−1
∑
ω∈Ω

pd(Xi|ω; β̂d) log pd(Xi|ω; β̂d).

It follows that ∆d has estimate ∆̂d = Îd − Îdθ.

The conditional expectation θ̃di = E(θdi|Xi) of θdi given Xi is found from Bayes’s theorem

to be Eθ|X(Xi;βd), where

Edθ|X(x;βd) =
∑
ω∈Ω

ωpdθ|X(ω|x;βd).

As in the multivariate normal case, although the expectation E(θdi) = E(θ̃di) of θdi is the

zero vector 0 under the model, the expectation need not be 0 if the model does not hold. The
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estimated conditional expectation of θdi given Xi is θ̂di = Edθ|X(Xi; β̂d). One may employ θ̂di as

an estimate of θdi. The expectation E(θdi) is then estimated by the average θ̄d = n−1
∑n

i=1 θ̂di.

The covariance matrix of θ̃di is

Cov(θ̃d) = E([θ̃di − E(θdi)][θ̃di − E(θdi)]′).

The corresponding estimate is

Ĉov(θ̃d) = n−1
n∑

i=1

[θ̂di − θ̄d][θ̂di − θ̄d]′.

The conditional covariance matrix C̃ovdi(θ|X) of θdi given Xi may be used to assess the

accuracy with which the data Xi determine θdi. One has C̃ovi(θd|X) = Covdθ|X(Xi;βd), where

Covdθ|X(x;βd) =
∑
ω∈Ω

[ω − Edθ|X(x;βd)][ω − Edθ|X(x;β)]′pdθ|X(ω|x;βd).

The estimate of C̃ovi(θd|X) is then Ĉovi(θd|X) = Covdθ|X(Xi; β̂d). The expected conditional

covariance matrix E(Ĉovdi(θd|X)) is then estimated by

Cov(θd|X) = n−1
n∑

i=1

Ĉovi(θd|X).

For any nonzero r-dimensional vector c, the reliability of c′θ̃di is

ρ2
d(c) =

c′ Cov(θ̃d)c

c′E(Ĉovi(θd|X))c + c′ Cov(θ̃d)c
.

As in the multivariate normal case, the reliability of c′θ̂di is approximately the same in large

samples, and the estimated reliability is then

ρ̂2
d(c) =

c′Ĉov(θ̃d)c

c′Cov(θd|X)c + c′Ĉov(θ̃d)c
.

4 Application to Praxis Data

To illustrate results, data from a Praxis examination were examined. The examination is

a multiple-choice right-scored test of content knowledge for certification for elementary school

teachers. The test includes 120 items divided into four sections of 30 items apiece. Sections

measure knowledge of language arts, mathematics, social studies, and science. For the particular

administration studied, two items were not used in scoring due to unsatisfactory performance, one
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Table 1
Estimated Expected Log Penalties per Item for Unidimensional Models

Estimated Akaike Gilula-Haberman
Model Latent variable log penalty measure measure
Independent 0.54539 0.54555 0.54555
1PL Normal 0.50785 0.50811 0.50811
2PL Normal 0.50115 0.50147 0.50148
3PL Normal 0.50034 0.50083
2PL Polytomous 0.50121 0.50153 0.50154

from the section on language arts and one from the section on social studies. As a consequence,

29 items are used for language arts, 30 for mathematics, 29 for social studies, and 30 for science.

Analysis included 6,168 examinees.

Preliminary analysis of the data was based on one scale with 118 items. A summary of

results can be found in Table 1. In this analysis, the univariate normal ability distribution was

used with a 1PL, 2PL, and 3PL model to obtain a basic perspective on estimated expected log

penalties per item. Adaptive quadrature used 9 points. For comparison, a 2PL model was also

used with nine ability levels. These levels were the integers −4 to 4, and (3) was used for the

ability distribution. A model that assumed that the Xij were all independent was also considered

to establish a further baseline. The Gilula-Haberman measure was omitted for the 3PL case due

to problems with parameter identification for this model (the Hessian matrix was nearly singular,

so that the correction was not approximated in a satisfactory manner).

The preliminary analysis suggests that, relative to the independence model, the normal 1PL

model represents an improvement of about 6.86% in the Akaike or Gilula-Haberman measures.

The gain from the normal 2PL model is modest, for the improvement over the normal 1PL model

is only about 1.30% for these two measures. The gain from the normal 2PL to the normal 3PL is

very small, only 0.13% for the Akaike measure. The polytomous 2PL case studied is comparable

to the normal 2PL model, for the loss in terms of the Akaike or Gilula-Haberman criterion is only

0.01%.

The choice of 9 points for the polytomous model is not of unusual significance. Use of 7 evenly

spaced points rather than 9 in the polytomous case defined by (3) only increases the Akaike and

Gilula-Haberman measures by 0.018%. In the other direction, a polytomous model with 11 evenly
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spaced points defined by (3) leads to Akaike and Gilula-Haberman measures only 0.004% greater

than in the normal case.

Use of (4) rather than (3) had relatively limited impact. Nonetheless, it is interesting to

note that a model for 9 points that used linear, quadratic, cubic, and quartic components yielded

essentially the same Gilula-Haberman measure as did the normal 2PL model and an Akaike

measure that was about 0.002% smaller than for the normal 2PL model. Nonetheless, models not

based on (3) generally involve somewhat more computational labor than do those based on (3).

For normal models, the choice of the number of quadrature points had relatively little

influence. Use of 5 or 7 quadrature points had virtually no effect. Even for 3 quadrature points,

the Gilula-Haberman and Akaike criteria increased by only about 0.002% relative to those for

9-point quadrature. Relative to 9-point adaptive quadrature, the extreme case of 2 points only

increased the Gilula-Haberman and Akaike criteria by about 0.008%.

Four-dimensional 2PL analysis was then considered for multivariate normal and for

polytomous cases. Results are provided in Table 2. The normal case reported used 4 points

for each dimension, so that 256 = 44 four-dimensional vectors were involved in the required

multidimensional quadratures. Essentially the same results can be obtained for other selections

of numbers of points per dimension such as 6 points for the first dimension and 3 points for the

remaining three dimensions, so that 162 four-dimensional vectors are required per quadrature.

Increases in Akaike and Gilula-Haberman measures of about 0.004% are observed with 3 points

per dimension.

A variety of multidimensional polytomous models were explored. A base model used 4 evenly

spaced points for each dimension and all possible combinations of these points with a log linear

model defined by (3). A second model used 5 evenly spaced points from −2 to 2 with a log linear

model defined by (3); however, vectors were excluded whenever the difference between any two

coordinates exceeded 2. Thus (−2,−1, 0,−1) was in Ω, but (−2,−1, 1,−1) was not in Ω. In all,

Ω contained 211 points. The third polytomous model used 6 evenly spaced points from −5 to 5

and a log linear model defined by (3), but vectors were excluded if any two coordinates differed by

more than 4, so that Ω contained 276 points. Thus (−5,−3,−1,−3) was in Ω but (−5,−3, 1,−3)

was not in Ω. The last model used 7 evenly spaced points from −3 to 3, and vectors were excluded

if any two coordinates differed by more than 4. Thus Ω contained 341 points.

In this example, some gain is achieved by use of a multidimensional analysis. In the normal
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Table 2
Estimated Expected Log Penalties per Item for Four-Dimensional 2PL Models

Latent classes Estimated Akaike Gilula-Haberman
Latent variable per variable log penalty measure measure
Multivariate normal 0.49856 0.49889 0.49890
Polytomous 4 0.49947 0.49981 0.49982
Polytomous 5 0.49888 0.49922 0.49923
Polytomous 6 0.49871 0.49905 0.49906
Polytomous 7 0.49861 0.49895 0.49895

case, the four-dimensional model results in a reduction of the Akaike or Gilula-Haberman criterion

by 0.514% relative to the one-dimensional model. This percentage change is much smaller than the

change from a one-dimensional normal 1PL model to a one-dimensional normal 2PL model, but

it is far larger than the change from a one-dimensional normal 2PL model to a one-dimensional

normal 3PL model or from a one-dimensional polytomous 2PL model with nine latent classes with

probabilities satisfying (3) to a one-dimensional normal 2PL model.

Differences between the normal case and the polytomous case are rather modest, although

some details are worth considering. In all cases in Table 2, the normal case is more successful;

however, the 7-point model increases the Akaike and Gilula-Haberman criteria by only 0.010 to

0.012%. Even for the 4-point example, the increase in the two criteria is only 0.184%. Use of more

general log linear models than the model defined by (3) had little effect. At least for the data

under study, model choice is likely to depend on the amount of computation regarded as tolerable

and on considerations related to interpretation of test results.

Results are also rather similar in terms of estimated information on θ and in terms of

reliability coefficients for estimated ability coordinates. Table 3 provides a summary of estimates

of the information concerning θi provided by Xi for the models considered. On the whole, the

estimates are quite similar, but again the multivariate normal case provides the best result, and

the polytomous case with 7 points per dimension has an estimate that is about 1.24% smaller. For

comparison, note that the estimated information for θi for a one-dimensional normal 2PL model

is 1.35963, so that the gain in the four-dimensional case is quite clear.

The estimated reliability coefficients for the four coordinates of θi are quite similar for all 2PL

models. Consider Table 4. The composite listed is the sum of the coordinates. For comparison,
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Table 3
Estimated Information on θi Provided by Xi

Latent classes Estimated
Latent variables per variable information
Multivariate normal 2.14457
Polytomous 4 1.99651
Polytomous 5 2.07177
Polytomous 6 2.09598
Polytomous 7 2.11788

Table 4
Estimated Reliability Coefficients

for Ability Estimates for Four-Dimensional 2PL Models

Latent classes Language Social
Latent variables per variable arts Mathematics studies Science Composite
Normal 0.86892 0.87644 0.83767 0.88038 0.92495
Polytomous 4 0.86581 0.88014 0.83331 0.87410 0.93046
Polytomous 5 0.86752 0.88098 0.83430 0.97704 0.92986
Polytomous 6 0.86807 0.87820 0.83541 0.88017 0.92903
Polytomous 7 0.86860 0.87940 0.83711 0.87915 0.92852

note that the reliability estimate for the one-dimensional normal case is 0.92620, and the estimated

Cronbach alpha for the sum of the 118 item scores is 0.92408. The score sums for the individual

sections have respective estimated Cronbach alpha statistics of 0.77088 for language arts, 0.84378

for mathematics, 0.71289 for social studies, and 0.77074 for science. The improved estimated

reliability for estimated conditional means of coordinates of θi reflects exploitation of correlations

between section scores. Results are rather similar, albeit slightly better, than the proportional

reduction in mean-squared error achieved by use of the observed section score sum and observed

total test score to predict the true section score (Haberman, 2005b). For these data, the estimated

proportional reductions are 0.85757 for language arts, 0.87370 for mathematics, 0.81210 for social

studies, and 0.86742 for science.

Estimated model parameters for the multivariate normal and polytomous cases are quite

closely linked, although some care must be taken to treat differences in scaling of variables. This

issue is especially significant when estimated item discriminations are studied. Conditional on

the test component, the sample correlation of estimated item discriminations for any pair of
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Table 5
Estimated Correlations of Ability Coordinates

Classes
Latent var. per var. LA by M LA by SS LA by S M by SS M by S SS by S
Normal 0.84538 0.83086 0.88139 0.72643 0.82708 0.89262
Polytomous 4 0.86155 0.79247 0.84659 0.69808 0.80617 0.81064
Polytomous 5 0.82869 0.81657 0.86311 0.71272 0.81040 0.87563
Polytomous 6 0.86808 0.86282 0.88860 0.81620 0.85890 0.90792
Polytomous 7 0.84035 0.82818 0.87485 0.72482 0.82361 0.88729

Note. LA = language arts, M = mathematics, SS = social studies, S science.

models is never less than 0.99880 and for the normal and 7-point polytomous cases, the sample

correlation is at least 0.99994; however, sample means of item discriminations for the different

models are quite different. The polytomous models with 4 or 6 points per dimension have item

discriminations roughly half of those in the normal case, while the polytomous models with 5 or 7

points per dimension have item discriminations somewhat larger than for the other polytomous

cases but appreciably smaller than in the normal case. In the case of the item intercepts, the

sample correlations for a specific test are all at least 0.99958, and at least 0.99999 for the normal

and 7-point polytomous pair. Here effects of scaling are much smaller, especially if the 4-point

polytomous case is excluded.

Comparison of estimated distributions of θi is more complex given the problem of scaling;

however, it is worth note that estimated correlations of coordinates of θi are somewhat similar

for the various models, but they do not agree very precisely. Consider Table 5. The 7-class

case exhibits particularly good agreement with normal results. The correlations are quite high,

although mathematics and social studies are less highly correlated than are other pairs of

disciplines.

5 Conclusions

The example suggests that either a multivariate normal or a polytomous ability distribution

can be used to achieve rather similar results for 2PL models for multidimensional item response

analysis. Either the stabilized Newton-Raphson methods or the EM algorithm may be employed

in computations. In this example, the multivariate normal ability distribution generally had

a slight advantage; however, the difference was remarkably modest. Client preferences could
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influence any decision concerning which model to use. It is possible that other examples will arise

in which differences between approaches have more substantial consequences.

Computational burden for analysis appears acceptable, although many details of calculation

would best be modified for much larger samples. It would probably be advisable to begin

calculations with a few hundred or few thousand observations to establish good approximations to

maximum-likelihood estimates. The approximations would then be used to complete computations

with the full sample. When computational labor is a major issue, then it is likely that the use of

adaptive quadrature in the multivariate normal case with only 2 or 3 points per dimension will be

the most attractive option.

The use of multidimensional item response models to generate subscores is quite feasible, as

evident from the example. Given the similarity in results to those based on classical test theory,

client preferences may again be a significant consideration.

The example used in the analysis was selected because the skills assessed were not closely

linked. It should be emphasized that multidimensional item response analysis is not likely to

reveal anything useful when skills are very tightly linked. Indeed, the estimation of the ability

distribution will become increasingly challenging as correlations of ability coordinates approach 1.

The techniques used in this report can be applied quite readily to multidimensional versions

of generalized partial credit models and to cases in which covariates are present or in which not

all items are presented to each examinees (Xu & von Davier, 2006); however, these generalizations

have not yet been fully implemented for all cases considered in this report.
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